(1)孔板流量计--原理:是以流量守恒定律和流动连续性方程为基础,当气体流经节流装置时,流束在孔板处形成局部收缩,从而使流速增加,静压力降低,在孔板前后产生静压力差(差压),气流的流速越大,孔板前后产生的差压也越大,从而可通过测量孔板前后差压来计量天然气流量。
——优点:适用于较大口径管道的计量;结构简单,安装容易;无可动部件,性能可靠,耐用;应用历史悠久,标准规定最全;按标准制造的孔板不需要标定;价格便宜。
——缺点:压损大时不适宜长输管线计量;量程比小;前后直管段要求长,占地面积大;输出信号为模拟信号,重复性不高;对整21TECHNOLOGYSUPERVISIONINPE-TROLEUMINDUSTRY套流量计的精度影响因素多且错综复杂,很难提高测量精度。
(2)气体涡轮流量计,——原理:利用气体推动流量计转子转动,通过测转子转动次数来计量气体流量。——优点:测量精度高,一般涡轮不确定度为0.5%~1.0%,精选涡轮可达到0.25%;测量范围宽,量程比可达1:30;输出为脉冲频率信号,便于和计算机配套;结构紧凑轻巧、安装维护方便。——缺点:有可动部件,易于损坏;抗脏污能力差,对介质的干净程度要求高。
(3)气体腰轮流量计,——原理:周期性地充满或排出一个或几个计量空间的气体,以此来测量气体体积流量。——优点:测量精度高,一般腰轮不确定度为0.5%~1.5%,精选腰轮可达到0.2%;量程比大,可达1∶400;可靠性好,不需要直管段;安装条件要求低。——缺点:安装时,壳体不能承受管线的各种应力;对介质的干净程度要求高。
(4)气体涡街流量计,——原理:基于卡门涡街原理制成的一种流体振荡型流量计。在管道中插入一个旋涡发生体,当管道中有流体流过时,在旋涡发生体的两侧将交替产生旋涡,在下游交替排列的旋涡列被称为"涡街",单位时间内通过某一点的涡街的数量与流体的流速成正比。——优点:无可动部件,稳定可靠;使用寿命长,维护量小;压力损失小;量程宽。——缺点:对雷诺数有要求(≥2×),适用范围受限;不适合在有振动干扰的管网中使用。由于涡街流量计应用时间短,导致工作条件的偏离到底会带来多大的附加误差至今在标准及生产厂家资料中尚不明确。
(5)旋进旋涡智能流量计,——原理:进入旋进漩涡智能流量计的气体,在漩涡发生体的作用下,产生涡旋流,涡旋流在文丘里管中旋进,到达收缩段突然节流,使漩涡加速;当漩涡流突然进入扩散段后,由于压力的变化,使旋涡流逆着前进方向运动;在进动区域内该信号频率与流量大小成正比。——优点:实现了机电一体化,日常的计量过程不需人工值守;工艺安装条件不苛刻,仪表上、下游直管段可较孔板流量计大大缩短;系统的测量准确度能够满足目前的贸易计量要求(≤2%);流量测量范围较宽(/=15~20),可在孔板流量计无法涉足的部分小流量区域进行有效工作;体积小、重量轻,离线标定较为方便;测量信号既可就地显示,也可按需远传;无可动部件,因此对于一般的测量就不存在仪表的机械磨损;仪表管理人员勿需专业培训,流量、压力及温度等测量参数可以从表头直接读取并且不必进行折算转换;只需定期更换电池(微功耗)及被测介质的参数。
——缺点:价格较贵。
(6)超声波流量计,——原理:超声波流量计由超声波转换器将电能转换为超声波能量,以一定的方式发射并穿过被测流体,接收器接收到超声波信号,供显示积算仪显示和积算,实现流量的检测显示。——优点:工作原理简单,有望成为基准流量计;测量精度高,可达0.5%;量程比大;能实现双向流量计量;可精确测量脉动流;适应性强,占地少;无可动部件, 坚固耐用,可直接进行清管作业;不受压力、温度、相对分子质量、气体组分变化的影响。由于它对流体无阻力,无压力损失,受流体物理性质限制少,以及使用简单等特点,备受业界关注,具有很大的前景。
——缺点:价格昂贵,只适合于大、中口径;